In geometry, a coordinate system is a system which uses a set of numbers, or coordinates, to uniquely determine the position of a point or other geometric element.[1][2] The order of the coordinates is significant and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in 'the x-coordinate'. In elementary mathematics the coordinates are taken to be real numbers, but in more advanced applications coordinates can be taken to be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the bases of analytic geometry.[3]
An example in everyday use is the system of assigning longitude and latitude to geographical locations. In physics, a coordinate system used to describe points in space is called a frame of reference.
The simplest example of a coordinate system is the identification of points on a line with real numbers using the number line. In this system, an arbitrary point O (the origin) is chosen on a given line. The coordinate of a point P is defined as the signed distance from O to P, where the signed distance is the distance taken as positive or negative depending on which side of the line P lies. Each point is given a unique coordinate and each real number is the coordinate of a unique point.[4]
The prototypical example of a coordinate system is the Cartesian coordinate system. In the plane, two perpendicular lines are chosen and the coordinates of a point are taken to be the signed distances to the lines.
In three dimensions, three perpendicular planes are chosen and the three coordinates of a point are the signed distances to each of the planes. This can be generalized to create n coordinates for any point in n-dimensional Euclidean space.
Another common coordinate system for the plane is the Polar coordinate system. A point is chosen as the pole and a ray from this point is taken as the polar axis. For a given angle θ, there is a single line through the pole whose angle with the polar axis is θ (measured counterclockwise from the axis to the line). Then there is a unique point on this line whose signed distance from the origin is r for given number r. For a given pair of coordinates (r, θ) there is a single point, but any point is represented by many pairs of coordinates. For example (r, θ), (r, θ+2π) and (−r, θ+π) are all polar coordinates for the same point. The pole is represented by (0, θ) for any value of θ.
There are two common methods for extending the polar coordinate system to three dimensions. In the cylindrical coordinate system, a z-coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates. Spherical coordinates take this a step further by converting the pair of cylindrical coordinates (r, z) to polar coordinates (ρ, φ) giving a triple (ρ, θ, φ)
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the use of infinity. In general, a homogeneous coordinate system is one where only the ratios of the coordinates are significant and not the actual values.
Coordinates systems are often used to specify the position of a point, but they may also be used to specify the position of more complex figures such as lines, planes, circles or spheres. For example Plücker coordinates are used to determine the position of a line in space. When there is a need, the type of figure being described is used to distinguish the type of coordinate system, for example the term line coordinates is used for any coordinate system that specifies the position of a line.
It may occur that systems of coordinates for two different sets of geometric figures are equivalent in terms of their analysis. An example of this is the systems of homogeneous coordinates for points and lines in the projective plane. The two systems in a case like this are said to be dualistic. Dualistic systems have the property that results from one system can be carried over to the other since these results are only different interpretations of the same analytical result; this is known as the principle of duality.[5]
Because there are often many different possible coordinate systems for describing geometrical figures, it is important to understand how they are related. Such relations are described by coordinate transformations which give formulas for the coordinates in one system in terms of the coordinates in another system. For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then the coordinate transformation from polar to Cartesian coordinates is given by x = r cosθ and y = r sinθ.
If all but one coordinate in a point coordinate system is held constant and the remaining coordinate is allowed to vary, then the resulting curve called a coordinate curve (some authors use the phrase "coordinate line"). This procedure does not always makes sense, for example there are no coordinate curves in a homogeneous coordinate system. In the Cartesian coordinate system the coordinate curves are, in fact, lines. Specifically, they are the lines parallel to one of the coordinate axes. For other coordinate systems the coordinates curves may be general curves. For example the coordinate curves in polar coordinates obtained by holding r constant are the circles with center at the origin. Coordinates systems for Euclidean space other than the Cartesian coordinate system are called curvilinear coordinate systems.[6]
In three dimensional space, if one coordinate is held constant and the remaining coordinates are allowed to vary, then the resulting surface called a coordinate surface. For example the coordinate surfaces obtained by holding ρ constant in the spherical coordinate system are the spheres with center at the origin. In three dimensional space the intersection of two coordinate surfaces is a coordinate curve. Coordinate hypersurfaces are defined similarly in higher dimensions.[7]
The concept of a coordinate map, or chart is central to the theory of manifolds. A coordinate map is essentially a coordinate system for a subset of a given space with the property that each point has exactly one set of coordinates. More precisely, a coordinate map is a homeomorphism from an open subset of a space X to an open subset of Rn. It is often not possible to provide one consistent coordinate system for an entire space. In this case, a collection of coordinate maps are put together to form an atlas covering the space. A space equipped with such a atlas is called a manifold and additional structure can be defined on a manifold if the structure is consistent where the coordinate maps overlap. For example a differentiable manifold is a manifold where the change of coordinates from one coordinate map to another is always a differentiable function.
In geometry and kinematics, coordinate systems are used not only to describe the (linear) position of points, but also to describe the angular position of axes, planes, and rigid bodies. In the latter case, the orientation of a second (typically referred to as "local") coordinate system, fixed to the node, is defined based on the first (typically referred to as "global" or "world" coordinate system). For instance, the orientation of a rigid body can be represented by an orientation matrix, which includes, in its three columns, the Cartesian coordinates of three points. These points are used to define the orientation of the axes of the local system; they are the tips of three unit vectors aligned with those axes.
A coordinate transformation is a conversion from one system to another, to describe the same space.
With every bijection from the space to itself two coordinate transformations can be associated:
For example, in 1D, if the mapping is a translation of 3 to the right, the first moves the origin from 0 to 3, so that the coordinate of each point becomes 3 less, while the second moves the origin from 0 to -3, so that the coordinate of each point becomes 3 more.
Some coordinate systems are the following:
There are ways of describing curves without coordinates, using intrinsic equations that use invariant quantities such as curvature and arc length. These include:
In mathematics, two vectors are orthogonal if they are perpendicular. The following coordinate systems all have the properties of being orthogonal coordinate systems, that is the coordinate surfaces meet at right angles.
|